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Overview of Spintronic Sensors With Internet of
Things for Smart Living
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Ultrasensitive NO; gas sensor with insignificant NHz-interference based on
a few-layered mesoporous graphene
Daniel Matatagui “*, Jesis Lopez-Sanchez """, Alvaro Pedia , Afda Serrano”,

Adolfo del Campa”, Oscar Rodriguez de la Fuente ™', Noemi Carmana ', Elena Navarro ',
Tttt Mt “armen Horrillo

2 &
ration (ppm)

=
w

025 rator ~», Sensor Chamber
2 Gas

n

010

, C

000
100__200 300 400

Time (min)

N

[N | RRSpR——

Time (min)

358 360 362 364 366 368 370 372




Lithography

(a) Substrate : Pattern
Cleaning Transfer 3
T Biosensors and Bioelectronics
@ @ { (] i Valiame 133, 18 My 2019, Poges 2431
Metallization Etching o

(E-beam
Evaporation

Chemiresistive DNA hybridization sensor
with electrospun nanofibers: A method to
minimize inter-device variability
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Polycyanopropylmethylsiloxane (PCPMS)
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Micromechanical resonators: cantilever

Sensors 2015, 15(10), 26478-26566

Figure 1. Schematic diagram of the beam-based resonators. Doubly clamped beam (a) and cantilever
beam with the flexural (out-of-plane) mode (b), the lateral (in-plane) bending mode (c) and the elongation
(in-plane) mode (d).
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Figure 8. Resonant frequency shifts in MWNT nanomechanical resonators due to mass
migration. Reused with permission from [97], Copyright 2009, American Chemical Society.
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Figure 12. A suspended microchannel microresonator for biomolecular
mass sensing reported by Burg et al. [163]. Reused with permission
from [163], Copyright 2007 Nature Publishing Group. (a) Schematic of
mass measurement mode by a microcantilever; (b) Resonant
frequency shifts caused by accumulation of proteins inside the
cantilever.
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Sensing of the Molecular Spin in Spin-Crossover Nanoparticles with
Micromechanical Resonators
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Fei-based spin-crossover nanoparticles of the well-known

[Fe(Htrz)2(trz)](BF4)
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SENSOR PRINCIPLE
Driving Coil
Pick-up Coil .
W Fequency (kHz)
ve
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Longitudinal oscillation

Measurements of the resonance frequency are performed by using a
magnetoelastic resonance analyzer set up.

The variation in the pick-up coil impedance with frequency allows the
observation of resonance,f, and antiresonance,f,, frequencies of the microwire.

Magnetoelastic resonance-based gas sensors
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u: Displascement

p: Density

ELASTIC WAVE EQUATION E: Young's modulus
v: Poisson ration
Longitudinal vibration (y direction) I: Length of the wire
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Magnetoelastic resonance is observed when the frequency of applied field
matches the mechanical resonant frequency of the microribbon
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ribbon (Tg = 369°C, Hy = 6.1 k Oe).

Scaling of the

moment was accomplished by assuming that the sample is
close to saturation with a saturation moment of 1.757.
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High-Sensitivity Wireless Sensing Using
Amorphous Magnetic Microwires

B.T. Lejeune”, Papa Gorgui Birame Gueye, Diego Archilla Sanz"', Elena Navarro™,
Manuel Vazquez"™', Senior Member, IEEE, Rafael Perez del Real, Member, IEEE,
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5000 = ——
X ——0mg loading |
o 45004 % —— 0.8 mg loading |
] —— 2.0 mg loading |
E 40004 | —— 3.2 mg loading |
2
a
3500+
:
£ 3000+
E
< 25001
2000 l T r r
35 40 45
Frequency (kHz)

duipeo ssen

(a)

-1.0 T T T T T
-20 15 410 05 00 05 10 15 20

Admittance (a.u.)

4000

35004

25004

2000

38 40 a2 44 46
Applied Magnetic Field (Oe) Frequency (kHz)
E 01 gy
g (b) HilH
c -5
% HH
HlH
ey -
2 -104 -y
@
=]
g =154 o
= >
©
5 201 m  Silver paint
a ® Nitrocellulose .
m -25 T L L T T
0 50 100 150 200

Mass change (%)

48

biosensors

Real-Time Monitoring of Breath Biomarkers

A Proof of Concept
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In this work, we have developted a real-time monitoring system of the resonant frequency on a magnetoelastic trasducer.




Acetone Ammonia

Hepatic and chronic
kidney diseases (CKD),
and cancers

Diabetes melitus

Benzene

Sensor selectivity capacity

Schematics of the sensor cell, which includes cover (1),
magnetoelastic microribbon (2), permanent magnet (3), and
main body (4).

Figure 2. (a) Schematics of the oscillator circuit and electrical characterization setups for
(b) frequency spectra and (c) real-time oscillator monitoring.

(a)

Magnetostrictive microrribon (resonator)

Band-pass filter

polyvinylpyrrolidone (PVP),

SEM images of the electrospun sensitive layer
deposited over the transducer.
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Frequency spectra of the transducer with and without the sensitive layer functionalization.
Simulation results are used to illustrate the magnetoelastic resonance in the gain spectra for the
no resonance state (NR) and the first (R1) and second (R2) harmonic of the magnetoelastic

resonance.
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This work presents a proof of concept of the development of a magnetoelastic transducer and
a measuring setup able to characterize resonant frequency in real time.

This transducer was functionalized with nanofibers of a sensitive polymer,
polyvinylpyrrolidone (PVP),

to build a sensor capable of distinguishing between regular air and exhaled breath, as well as
of quantitative and reproducible detection of relative humidity (RH), acetone, and ammonia in
gaseous environments in a contactless, remote manner. In addition, benzene was used to test
the sensor selectivity capacity.

Acetone Ammonia Benzene

Hepatic and chronic
kidney diseases (CKD),
and cancers

Diabetes melitus
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The sensitivity of the device, defined as the response to a
specific concentration of the analyte (expressed in Hz/%),
was obtained by fitting the values provided in Figure 9a. A
linear response regime for levels up to RH = 73% was
established. The linear fit provided a sensitivity of —=1.17 +
0.1 Hz/% (R? of 0.97).

Time (min)

Tyg (mMin)

17 3 54 73 95 17 36 54 73 95
Relative humidity (%) Relative humidity (%)

The responsiveness time can be evaluated
using the 14, parameter, defined as the time
required to achieve the 90% maximum
frequency change (Figure 9b). In general, the
sensor device showed a fast recovery with a
low baseline drift for tested RH.
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Compared to water, acetone, and ammonia, the sensor demonstrated an excellent performance, as the device showed an insignificant response to
benzene. According to the relationship between the experimental responses, PVP nanofibers can bind with polar molecules, e.g., water, acetone, or
ammonia with insignificant interaction with non-polar molecules such as benzene.
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Real-time monitoring of breath biomarkers using magnonic wireless sensor
based on magnetic nanoparticles
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J.D. Aguilera®, D. Arranz *, A. Pefin", P. Marin ", M.C. Horrillo", P. de la Presa "
D. Matatagui ™

Magnetostatic surface spin waves (MSSW)

— I, wy =YATM, being Ms the
wy = yH is the Larmor

Copper (15 ym) sep
YIG (7.3 jimi)

GGG (500 ym)

Some important properties of MSSWs include their very low

level of propagation loss at microwave frequencies, high-loaded

‘Q value’ (indication of under-damping), small wavelength, and

high tunability (from 0.2-20GHz). We also note that the

frequency of a spin-wave oscillator can be tuned by changing

the magnitude of a bias magnetic field (HB), while the MSSW
wavelength remains constant. In our case, we applied a bias

magnetic field (about 2000e) perpendicularly to the wave propagation
direction and parallel to the YIG film plane
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First, and as it is shown in the hysteresis loops presented in Fig. 4(a),
Fe3O4 nanoparticles have high susceptibility.

Secondly, it has been reported an increase in the Fe®~/Fe®~ cations
ratio in Fe3Os nanoparticles under the presence of gaseous benzene,
toluene, ethylbenzene, and o-xylene (BTEX) at room temperature and
atmospheric pressure [39], indicating a relative good physisorption of
these gases. And even though to the best of our knowledge there is no
literature about the physisorption of acetone, ammonia, or carbon di-
oxide by FesO4 nanoparticles, a similar mechanism could be expected
due to their reducing nature. The change in the Fe®~/Fe® ratio can
induce significant changes in the magnetic behaviour of the surface
atoms [40] and, given the high surface to volume ratio, this change can

L B O s v e

It is noteworthy that the sensor
exhibits the capability to
successfully detect acetone
(diabetes mellitus biomarker) at
concentrations between 20 and 50
ppm within a brief exposure time of
1 min. This achievement was
accompanied by remarkable
recovery and reproducibility rates,
as well as distinct response
parameters compared among
biomarkers.







